an lp-lq-version of morgan's theorem for the generalized fourier transform associated with a dunkl type operator
Authors
abstract
the aim of this paper is to prove new quantitative uncertainty principle for the generalized fourier transform connected with a dunkl type operator on the real line. more precisely we prove an lp-lq-version of morgan's theorem.
similar resources
An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
full textAN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM
n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.
full textan lp-lq-version of morgan’s theorem for the generalized bessel transform
n this article, we prove an lp-lq-version of morgan’s theorem for the generalized bessel transform.
full textAn Lp-Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups
We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp −Lq version of Hardy’s theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1 ≤ p, q ≤ ∞, and f a K-bi-invariant measurable function on G such that h−1 a f ∈ Lp(G) and eb‖λ‖ (f )∈ Lq(a∗ +) (ha is the heat kernel on G). We establish th...
full textGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
full textOPERATOR-VALUED Lq → Lp FOURIER MULTIPLIERS
Fourier multiplier theorems provides one of the most important tools in the study of partial differential equations and embedding theorems. They are very often used to establish maximal regularity of elliptic and parabolic differential operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensively in [1, 2, 3, 5, 7, 8, 9, 10, 11, 12 ]. B...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of mathematical modelling and computationsجلد ۶، شماره ۴ (Fall)، صفحات ۲۸۵-۲۹۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023